Aufgabe 1 - Hardware

25 BE

1.1 Speichertechnik

Im nachfolgenden Bild 1.1 wird die Speicherbelegung eines Mikrorechnersystems dargestellt. Der Speicher ist an einen Prozessor mit 16 Adress- und 8 Datenleitungen angeschlossen.

RAM1 belegt die höheren 4 Bit des Prozessordatenbusses, RAM2 die niederwertigen 4 Bit. Alle CE-Eingänge der Speichermodule sind low-aktiv.

Anfangsadresse	Speicherchip			
	RAM1	4K x 4 Bit	RAM2	4K x 4 Bit
0800H	2K Byte frei			
0000H	Flash-RAM 2K x 8 Bit			

Bild 1.1

1.1.1	Welche Anfangsadresse besitzt der RAM-Bereich?	(1 BE)
1.1.2	Welche Speicherkapazität besitzt das gesamte Speichersystem einschließlich des freien Speicherbereiches?	(1 BE)
1.1.3	Entwerfen Sie nachvollziehbar eine Schaltung für den Adressdecoder, der nur den Flash-RAM aktiviert. Verwenden Sie nur NAND-Bausteine mit zwei Eingängen.	(4 BE)
1.1.4	Welche Eigenschaften besitzen Flash-RAM's? Nennen Sie wenigstens zwei Einsatzgebiete.	(2 BE)
1.1.5	Wie viele Adresseingänge besitzt der RAM1? Begründen Sie Ihre Antwort.	(1 BE)
1.1.6	Welche Bedeutung hat der Steuereingang CE (mitunter auch mit CS bezeichnet) bei einem RAM?	(1 BE)

1.2 Digitaler Vergleicher

Zwei 2-Bit-Zahlen a und b sollen verglichen werden.

1.1.7 Erläutern Sie den Begriff "statischer RAM".

- 1.2.1 Ergänzen Sie auf dem Arbeitsblatt die Spalten für y₁, y₂ und y₃ so, dass bei Vorliegen der jeweiligen Bedingung der y-Wert = 1 ist. (2 BE)
- 1.2.2 Erläutern Sie, wie man eine Funktionsgleichung in disjunktiverNormalform aus der Wertetabelle ermittelt. (2 BE)

(1 BE)

1.2.3	Erstellen Sie die Funktionsgleichung in disjunktiver Normalform	
	für a < b.	(2 BE)

- 1.2.4 Vereinfachen Sie die Funktionsgleichung für a < b so weit wie möglich. (2 BE)
- 1.2.5 Wandeln Sie den Term $y_4 = a_1 \overline{a_0} b_1 \overline{b_0}$ so um, dass die daraus abgeleitete Schaltung aus NOR-Gliedern mit je zwei Eingängen gebaut werden kann. Zeichnen Sie diese Schaltung. (3 BE)
- 1.2.6 In welcher internen Baugruppe eines Mikroprozessors kann ein digitaler Vergleicher vorhanden sein? (1 BE)
- 1.2.7 Nennen und erläutern Sie die Wirkungsweise eines Vergleichsbefehles, den Sie aus der als Hilfsmittel ausgegebenen Befehlsliste (Assemblerbefehlssatz) auswählen.
 (2 BE)

zu 1.2.1

Zahl a		Zahl b				
2 ¹	2 ⁰	2 ¹	2 ⁰	a < b	a > b	a = b
a ₁	a_0	b ₁	b ₀	y 1	y ₂	y ₃
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			